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g) ELECTRON MICROSCOPY OF METEORITIC AND

4 ARTIFICIALLY SHOCXED GRAPHITE"

THOMAS P. SCIACCA AND MICHAEL E. LIPSCHUTZ{

Sample: of graphite, partly converted to diamond by shock, and meteoritic graphite were
studied by transmission electron microscopy. The shucked graphite remained in the form of
single crystals and was mildly deformed while the diamond which had formed was anhedral and
polycrystalline. The meteoritic graphite contained minor amounts of troilite (FeS) and elemental
sulfur but no detectable carbon phase other than graphite.

Asan adjunct to an x-ray crystallographic study
of meteoritic diamonds (/) we have studied the
morphology of the phases present in meteoritic
graphite, and in graphite which has been artifi-
cially shocked at pressures high enough (300 kbar)
to nroduce diamond (2).

Samples of the siarting material, high-purity
graphite (3), as well as the resulting shock-
product, and graphite from the interior of a 1.1-g
graphite nodule from the Canyon Diablo iron
meteorite were crushed to 100 mesh. Slurries in
ethanol were then placed in an ultrasonic gene-
rator for 5 minutes to disperse the sample uni-
formly. The suspensions were placed on
Formvar, collodion, or carbon substrates for
examination in a Hitachi HU-11 electrc: micro-
scope. Phases were identified by electron diffrac-
tion of selected areas with gold and palladium as
standards.

Figure la shows a typical graphite-diamond
intergrowth from the artificiaily shocked grapbite.
All of the diamonds formed in this manner were
anhedral and polycrystalline. The graphite
flakes seemed mildly deformed although they
remained single crystals. Figure 1b shows a
typical graphite flake from the atarting material.

In both the starting material and shock pl.'oduct Fioune 1.—(a) Di I raphite in wih in arti
the only other phase that we found was in the ficially shocked graphite. Note the anhedral mior-

- phology of th .. ~ger diamond grains (D). (b) Typical
*Published in Seisnce, 145 (3636): 1049-1030, September 4, 1¥64. N . A
Goddard Space Pligh Conter, flake frcin the graphite starting material. The texture

) of this fiake may be comparod with that of the un-
. ohes | yarsitat B, Sidlestrases 5,
ClonrpDiiatiches Ionitst Uk - B \ransformed graphite in (),
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Figure 2.—Unidentified species present in both starting
material and shock product. The cell dimension of these
cubes is similar to that of the “cartn II"” phase re-
ported by Aust and Drickamer (4.)

form of euhedral rubes (Fig. 2) which were single
crystals of uncertain origin. The cell dimension
of these simple cubic crystals (ay=5.55 A) corres-
ponds very closely to that of the “carbon II”
phase (ap=>5.545 A) reported by Aust and Drick-
amer (4). Inasmuch as the cubes were present
in very small numbers (< <1 percent) in both the
starting material and product we cannot say that
they were produced by shock or, in fact, that they
were composed of carbon. It seems very unlikely
that some extraneous material would possess
exactly the same cell dimension and crystallo-
graphic habit as ‘“carbon II”. Yet the cubes’
euhedral appearance, the general perfection of
these crystals, and their low abundance suggest
that they were contaminants and not shock-
formed. It could also be that these cubes were,
indeed, “carbon II” which had grown relatively
slowly during, preparation of the original artificial
graphite block. Unfortunately, all three alterna-
tives (contamination, shock-formation, or slow
growth) seem equally unlikely and it is impossible
to decide among them with the available data.
The anhedral morphology of the artificial dia-
mond might be expected from the short time
available for crystal growth under the experi-
mental shock conditions. Shocks generated dur-
ing asteroidal collision (1) on the other hand, no
doubt were of 'onger duration and might well be
expected to result in the formation of subhedral
dia: .ond grains. These grains would probably
be polycrystauine aggregates, since the shock-

induced conversion of grapbite to diamond ap-
parently proceeds by a mechanism other than the
orderly diffusion and addition of carbon atoms to
diamond nuclei (7, 2). “

X-ray fluorescence analysis of the interior of
the Canyon Diablo nodule indicated the presence
of only iron and sulfur. The only carbon phase
detected was normal graphite. The cubic phase
seen in the starting material and shock product
was not observed in the Canyon Diablo nodule.

The sulfur in the Canyon Diablo material
apparently exists in two forms; as free rhombic
sulfur and as troilite (FeS). Figure 3a shows
anhedral single crystals of sulfur in a graphite
matrix at an electron accelerating voltage of
75 kv. At 100 kv, the normal operating voltage

-

Fioure 3.—(a) Sulfur (S), graphite mixture from Canyon
Diablo (75-kv electrons). (b) The same area examined
with 100-kv electrons. The higher accelerating voltage
has sufficiently increased the temperature to melt the
sulfur grains.
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in these studies, the temperature reached was
high enough to melt the sulfur (m.p. 113°C), and
further aided in its identification (Fig. 3b). The
troilite in the graphite nodule was identified by
both x-ray and electron diffraction. It was pre-
sent in amounts greater thai about 5 percent
while the sulfur was presen. in lesser amounts
(about 2 percent).

The coexistence of troilite and elemental suifur
has been observed previously in Type I carbon-
aceous chondrites (§) although in these meteorites
there is considerably more sulfur than troilite.
Free sulfur has not previously been reported in
iron meteorites. It may be that the sulfur was
formed by terrestrial weathering of the troilite,
the iron thus liberated forming amorphous lim-
onite (6). An alternative is that these minerals
are preterrestrial. If this was the case it iu
expected that the S32/S3%¢ ratios in the troilit .d
sulfur may differ.
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A.C. CONDUCTIVITY OF A PLASMA*

C. 8. SHEN{ AND R. L. W. CHEN}

This paper computes the electrical conductivity of a fully ionized, spatially homogeneous
plasma under the influence of ~ uniform, periodically aiternating electric field. The velocity
distribution of the electrons is determined by solving the linearized Fokker-Planck equations,
All the terms in the collision integral are retained, including those representing electron-electron

interactions.

The resultant values of conductivity is expected to be valid in the range of fre-

quencies from zero to below the plasma frequency.

I. INTRODUCTION

The purpose of this paper is to calculate the a.c.
conductivity of a spatially homogeneous plasma
using the Fokker-Planck equation. The d.c.
conductivity of a plasma has been calculat>d in
the well-known works of CoHEN et al. (1950) and
Spitzer Jr. and Hirm (1953). Their results are
in good agreement with the later experimental
works of LIN et al. (1955). BERNSTEIN and
TREHAN compute the a.c. conductivity assuming
a Lorentz gas model (1960). The a.c. condue-
tivity of a real gas should approach that of a Lor-
entz gas at high frequencies (see detailed discus-
sions in Section 4). Toward lower frequencies
their departure is expected to increase so that their
ratio becomes nearly 2 in the d.c. limit, in accord-
ance with CoHEN et al. and SpiTzer and HirMm.
The recent works on a.c. conductivity by Dawson
and OBERMAN (1962) consider the time variation
of the two-particle distribution, which is neces-
sary when dealing with a.c. currents of ultra-high
frequencies. However, the domain of applica-
bility of their work is limited to frequencies much
higher than the collision frequency. Thus, a
more precise calculation for the low and inter-
mediate range of w appears desirable and we pro-
ceed to do this in accordance with methods to be
described in the next section. After completion
of most of the numerical work, a paper by Ropin-
soN and BERNSTEIN (1962) came to our attention.

*Published in Plasma Fhysice (Journal of Nuclear Ene
6:380-309, 1064.

‘¢National Academy o Sciences—National Research Council Re-
search Associate with NASA and Research Fellow of Institute of
Physics, Academia Sinica, The Republic of China.

{National Academy of Sciences—National Research Council Re-
search Associate with NASA.
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They computed the a.c. conductivity using a
variational technique. Our results obtained by
direct integration of the Fokker-Planck equation
will be compared to theirs in Section 4.

We begin with the Boltzman equation:

of,
+<W>c

where f, is the distribution function of particles

of type 1, (%) is the change of f; produced by

_aﬁ_*.v.g'f.‘.:_ﬁl.a_f‘_

ot ar m 9v (1)

collisions.

Equation (1) is deduced from Liouviue theo-
rem to describe a many-particle sysiem under two
assumptions:

(i) That the characteristic dimensions of the
inhomogeneities are much larger than the average
impact parameter for the particles participating
in the collision.

(ii) That the characteristic time variation of the
process i8 much longer than the duration of an
average collision, or in other words, a collision is
completed and the correlation function is ‘relaxed’
before the distribution function itself makes any
appreciable change.

1t should be noted here that the term ‘duration
of collision’ is different from the so-called ‘collisirn
time’; collision time is the time between two colli-
sions, For particles interacting through long-
range forces, this time may be regarded as the time
in which deflexions gradually deflected the con-
gidered particle by 90°. Duration of collisiou is
the time during which un interaction takes place.
In a plasma it is of the cder w,m!. In Fig. 1 a



R L R

1330

~———————» Region one <

(1] We Wp
I w—
» Region two

Fi1Gure 1.—The ranges of validity computed a.c. conduc-
tivities, The values of a.c. conductivity obtained in
this paper is valid in region one. When omega exceeds
w—region two—the values calculated by Dawson
and Oberman begin to be valid. Here w, is the colli-
sion ‘requency, w, is the plasma frequency.

time-scale diagram is drawn, and the validity of
our calculation and those of Dawson and OBER-
MAN are indicated. of,

The explicit expression of ( > depends on

the nature of the interaction force. In a fully
ionized plasma, the particles interact through the
long-range Coulomb forces. The cumulative
effect of ‘weak’ deflexions resulting from the rela-
tively distant collisions outwv:ighs the effect of
occasional large deflexions due to relatively close
collisions, so one may neglect the contribution by
those very close encounters (CoHEN et al.)—en-
counters which result in deflexions of 90° or larger.

Also, the effect of distant particles lying outside
the Debye length A\p may be neglected because of
the shielding of inner particles. Thus, in the

computations of %';_‘ , it is only necessary to
¢
consider the collisions with impact distance inter-

2
mediate between \p and by, where bo=KiT. is the

impact parameter yielding a 90° deflexion. The

effzcts of these collisions are cumulative, and the

total deflexion produced in an interval of time is

similar to that of the Brownian motion; hence,
2

one may expand (%) in powers of [Av], where

[4
{Av]is the average velocity change due to collisions

(CoHEN et al., CHANDRASEKHAR, 1943). This
procedure leads to the following Fokker-Planck
collision integral (ROSENBLUTH ef al., 1957):

6.,( ah( 16 a’g
(5:) P‘{ (f av>+26vav< ra?ﬁ)} )
where

b= S [avgwylv-vi™ @)

]
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=3 / aveLv) V=] @
and !
_4xd'e' . mmapn’\D
Te= m? ln2(m¢+m/)ez' ®)

The snmmation in h, and g sums over all species,
mis the mass of the i-th species, e is the electronic
charge, \p= (ﬁ_y is the Debye length, and

4rne?
vex i8 the relative thermal velocity.

In this paper we consider only plasma with
singly-charged ions. The extension of the present
method to those with multiply-charged ions is
straightforward.

2. DERIVATION OF EQUATIONS
AND FORMULAE

If the distribution function f has an azimuthal
symmetry about a certain axis, then, following
ROSENBLUTH et al., the collision term may be
written down explicitly in spherical pola: co-
ordinates in velocity space:

()] -0
Y i EY

+@) a"-u,[f,u’a%]

120, [f{ S
3
‘ou

62 —10g

+v Fudv [ft( “#){aya —v 3};}]
+(20 )‘”’[f,{—u-*u "9 %

+2u0 “"”}]+(2 H2 [ft{»' u(1—pt )

FAIN

where p=cos 6 is the direction cosine between v
and E. Equation /6) is an exact =xpression of the
Fokker-Planck equation in spherical co-ordinates
for a distribution function with azimuthal

symmetry.

+u (14 )——u" (1-

+2u “a"+2 “(1—u
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We assume that the system is subject to a weak
electric field Ege* whose direction -lies along
z-axis. Then following CHapMAN and CowLiNG
(1939) and SeiTzeR Jr. we expand f; in a power
series of E:

S0, ) =fO0) +Eof Vv, ) +ESf BV, )+ -+ (7)

where f,(v) is a time-independent Maxwellian
distribution and f®(v,t), f@(v,{),+++++ are the
perturbed part due to applied electric field. When
a steady state has been reached and no transient
current exists, the time-dependent part of f,¢
(v,t) must be proportional to e** Since the
average energy imparted to the electrons between
encounters is small compared with their kinetic
energy, the velocity-dependent part of f?(v,t)

can be written as e~{™®/2k1D D (y)u.  Therefore,
we have
I2
) —m IZKT [€)} W!
[, 8= @_K_Tme ® 2D (v)ue 8

Combining equations (1), (6) and (7) keeping
only terms linear in E,, we obtain

Warr-(F), o

where (8f,/ 65)6,‘” is the linearized Fokker-Planck
collision integral.

Since the ions’ contribution to electric current
is negligible compared to electrons, we will con-
sider only electron distributions anc drop the
subscript ¢ in the distribution function hereafter.

Substituting equation (8) into equation (9)
we find, after some algebraic manipulations, the
following second-order linear integral-differential
equation:

D"(x)+P(x)D'(x) +QG)D(x) =R(x)+8(x) (10)
where
P(0=~2x- 1+ 2F W ()
— 3 = "y
Q(x) = i1Bx +21(11(:—)<I> Zx‘i’)_*_% (12)
2dx'  8(2-4x°—2x*
R(X)=-’H(:)_ (3‘I'U§H(x)x )IO(‘”) (1)
SO0 =gy (KFa0) = 1210
—x'L()(1-1-2x")} (14)
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200 = fe"dy (15)
0
H(x)=%(x) —x¥'(x) (16)
Lo =[v"Dy)e " dy (17)
I(=) = [D(y)e"dy (18)
with ’
a=—EXKT/ménIn X A=\p/b,
_ /(y@ v 4V _w
X=v m T w,In N W,

where w, is approximately the 90° deflexion time
of a particle with thermal velocity. When w=0,
equation (10)* reduces to equation (8) of SpITzZER
Jr. which considers d.c. electric conductivity.

In a d.c. electric field, the electrons are not
accelerated in a steady state. Hence, the inertia

force term is zero and Io( )= §8—a

3. SOLUTION OF EQUATION

Equation (10) is a linear integral-differential
equation whose unknown D(x) is a complex func-
tion of a real variable. The present section will
discuss the mcthod of its solution. As will be
evident in what follows, the procedure for
numerical integration is far from straightforward.

On the onc hand, we encounter the problem of
the instability of the solution at small and at
large x. Because of the existence of singularities
in vquation (10) at 3 =0 and at x= =, a slight
deviation of D(x) at either small or large x, tends
to be built up quite rapidly. In order to obt~in
a physically acceptable solution, it is required
that D(x) does not a~nroach iufinity too fast, lead-
ing to infinite conductivities. The starting value
of D at small x can be obtained by means of &
series solution. Because of the instability, we
cannot proceed t¢ integrate in a step-wise manner.
To overcome this difficulty, we adopted a scheme

*Note that Je{ ®) is essentiully the total change of mementum of
electrons arising from electronion interactions. Since the mutual
electronic interaction cannot change the total momentum of the
electrons, Jo( ©), by Newton's second law, must equal the total force

exerted on the electrons by the applied field minus the inertis force of
electrons. This relation gives us:

I(=) =2~ L ().
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used by CoHEN el al. We shall refer to their
paper for full details.

On the other hand, we note that Io(=) is no
longer a known quantity as it is in the case oi d.c.
condactivity; it depends on the solution L(x)
itself. We proceed as follows: Since we want
conductivities at different frequencies, it is neces-
sary to ootain solutions for different values of the
parameter B. We begin with a small value
B=0:05. Using an I,(«) taken from the d.c.
case, i.e. Iy()=0:655, we obtain a solution to
equation (10) from which we get a new I;(»).
Next, we pass on to B=0-1 using the Iy() ob-
tained for the previous B. In this way, we pro-
ceed to ever-increasing values of B, until the initial
adopted Io(=) and the final calculated Io(w)
differ by no more than 2 percent. This occurs at
B=1-37. From this point on, we resort to a
method f systematic trials. The initial and
final Io() for all values of B agrec to within 2
percent, which is considered sufficiently accurate
for the present purposes.

4, RESULTS AND DISCUSSION
The current is given by
J=—e[dviil(v, ) = AEw“'Iy(=) (19)
where
g 2
Ii(w)= [ D0 dx
0

2 (2KT)"

3 x¥imizgin N

Since J=¢E, we have the complex conductivity
o=Aly(=), (21)

A= (20}

the impedance

1 e
TAL(=) IL=)

the resistance

_1 Rely(>) =cReIa(w)
A [I(=)]*  TL(=)[*
and the reactance

1 Inmly(=) _cImIy(x)
A Th(=)T*" Th(=)[*"

Z (22)

R (23)

X= (24)
with
1

e=— 1 H2m1 e In A,

2
=2 KTy
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It may be remarked here that the a.¢. conduc- \
tivity depends on three factors:

(i) The inertia of the conducting electréns.

(ii) The mutual interaction among electrons
and ions.

(i) The mutual interaction among electrons
themselves. )

The mutual electronic interactions have no
direct effect on conductivity since the total change
of momertum due tc such interactions is zero.
Nevertheless, they alter the distribution of elec-
trons and thereby modify the effect which elec-
tron-ion collisions and electron inertia have in
impeding the current. When w is small, the con-
ductivity is primarily determined by collisions.
The inclusion of electron-electron interactions
reduces the conductivity by a factor of approxi-
mately two. As w increases and becomes of
order w,, this effect becomes less and less impor-
tant because there is then insufficient time in each
a.c. cycle to allow au effective modification of the
. stribution by electron-electron interactions.
When o well exceeds w, we may neglect this
effect and D(x) reduces to

4

D(x)=—=%
1+’—é—9x’

(25)

and the corresponding conductivity becomes

[+ <] , —:2
a,(x)=A/l-‘i——dx
1+3§ 3
0 2)(

(26)

which is just the a.c. conductivity of a Lorentz
gas (BERNSTEIN and TREHAN).

T T T T

oA

Og ac Conductvity of a Reol Gos b
v = OL oc. Conductivily of @ Lorentz Gas
ity w the Hgh Freg

3F
\

y Limit

\ -— —0OgacC

Ficure 2.—A. C. conductivities.
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TaBLE 1.—Values of D(x) for w=w, and =0 w,= 22
! a2
RA
I - w =W w = 0
09 z
o8t Re[D(x)) Im|D(z)] D(x)
o7
r 4 0s s 1 0.10._..| 0.0005887 | —0.0002029 0. 0008093
. o e Ry oc Aeustty of o sl 684 ] 0.11____| 0.0009252 —0.0003438 0. 001300
[ S e R, 6 ¢ Resstwity of o Lorentz Gas 0.12__._._ 0.001376 -0, 000542 0.001970
H 04 _’/ = == ~— Rg=113 a ¢ Resistivity in the High Fraquency Limit | 0.13._ .. 0.001956 —0. 0008068 0. 002847
03 ) - » 0.14__ .. 0. 00268 -0.001149 0. 003955
12 3 4 5 6 7 8 9 10 wh 0.15__ .. 0. 00356 —0.00158 0.005317
_ Cpiea 0.16.... 0. 0v4h1 —0.00210 0. 006955
Figure 3.—A. C. resistivities 01T . 0. 00583 —0.00272 0. 008886
t 0.18_ __. 0.00724 —0.00346 0.01113
T T 0.19....{ 0.00884 ~0,00431 0.01370
0.20.... 0.01063 —0.00528 0.01660
0.22.... 0.01483 —0,00761 0.02347
T 7 0.24.. .. 0.01985 —0.01048 0.03180
el | 0.26.._. 0.0257 -0.0139 0.04165
0.28.__. 0.0324 —0.0180 0. 05304
5L 4 0.30....}] 0.0400 -0.0226 0. 06601
0.32.... 0.0483 —0.0279 0. 08057
4t 7 0.34.... 0.0575 -0.0339 0.09672
sl 0.36.._. 0.0675 —0.0405 0.1145
J 17 o0.38....| 0.0783 —0.0478 0.1338
2 b /7 T Xp oc¢ Rwactonce of a Real Gos - 0.40__._. 0.0899 -0.0557 0. 1548
~~=---= X_ oc Reoctonce of ¢ Lorentz Gos 0.44_ ___ 0.1153 —0.07356 0.2015
s — T~ = Xg oc Reoctonce in the High Frequency Limit N 0.48 0. 1435 -0 09436 ) 2545
e 0.52....[ 0.1744 —0. 1172 0.3137
) 12 3 4 5 6 7 8 9 10 why 0.56_._.] 0.2080 —0.1442 0.3792
0.60.... 0.2439 -0.1734 0.4508
F1GUuRE 4.—A. C, reactances 0.64. ... 0. 2882 —0.2055 0. 5285
. . . 0.68_._. 0.3227 ~0. 2405 0.6123
If we further increase w, the inertia of electrons  ¢,72 ___| 0.3652 —0.2785 0.7023
become dominant. Then we may treat collision  0.76_._..| 0.4006 —0.3196 0.7983
effect as a perturbation and obtain 0.80....| 0.4559 —0.3637 0.9005
- 0.88._.. 0. 5535 —0.4813 1.123
_af 3" TRAY gy 096} 0.6570 ~0.5718 1.371
w=d\ -5 g @7 ylosa .| o.7656 ~0. 6957 1.645
1 431 1.12.... 0.8782 —~0. 8335 1.945
Z,=— ————(8+3x'"%B) 23 1.20._..| 0.9937 —0.9858 2.273
® A 64-:-91B2( 8) L28....| L1n —1.1531 2.630
1 32 64 1.36.... 1.2290 ~1,3359 3.017
Re=7 s 1-5.5 (29)  144... 13457 ~1.5347 3.435
‘1 64 1.52.... 1, 4508 -1, 7500 3.887
_ 15 112 _ 1.60....] 11,5693 —1.9820 4.375
Xo=glor B(l 9,-.3!)‘ B0 70 1ivest ~2.4962 5.465
1.92.... 1.1915 -3.0734 6.728
In Table 1 the values of D(x) for B=1 are  2.08....| 1.9973 ~3.7049 8.190
given and compared with the corresponding g 23- --- : gg;: —;- ggg; ?1 33
he d.c. case in 8 R Jr. Wit . -9 .
va.:iuel;“for the d.c obtained by Sp11zER Jr 272 | 1 4208 o 247 16. 62
anc 11ARM, ) 2.88....| 1.2108 ~6.6809 19.53
In Table 2 the resistance, the reactance and the  3.04.__ .| 1.3105 —6. 8066 22.74
absolute value of conductivity are given for vari- 8.20.._.| 2.1113 ~5.6758 26.00
ous B from 0 to 10. For B>10, one may use
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TaABLE 2.—The conductivily, the resistance and the reactance of a.c. current

/A R/c X/e
w/we —
Real gas | Lorentz gas | Real gas | Lornetz gas | Real gas | Lorentz gas
0.0__. 1.734 3.0 0.577 0.333 0.0 0.0
0.05.. 1.729 2,880 0.577 0.340 0.045 0.70
0.1__. 1.713 2. 653 0.577 0.354 0.089 0. 130
0.15_. 1.687 2.430 0.578 0.367 0.134 0.185
0.2... 1.651 2.233 0.579 0. 380 0.178 0.236
0.25__; 1.608 2.061 0.58" 0.393 0.223 0.285
0.3... 1. 561 1.913 0.582 0.404 0.267 0. 332
0.35. 1.510 1.784 0. 584 0.415 0.311 0.377
0.4... 1. 458 1.671 G. 587 0.425 0. 354 0.421
0.45__ 1.408 1.572 0. 590 0.434 0. 397 0.465
0.5... 1.354 1.483 0. 593 0.443 0. 440 0. 508
0.55. . 1.303 1. 405 0.597 0.452 0. 482 0. 550
0.6... 1.255 1.334 0. 600 0. 460 0. 525 0. 592
0.65. . 1.208 1.270 0. 603 0.467 0. 567 0.A34
0.7... 1.164 1.212 0. 607 0.475 0. 608 0.675
0.75.. 1.122 1. 159 0.610 0.482 0. 650 0.716
0.8... 1.082 1,11 0.614 0. 488 0. 691 0.756
0.85_. 1.045 1. 066 0.617 0.495 0.732 0.797
0.9.. 1.009 1,025 0. 620 0. 501 0.773 0.807
0.95_. 0.976 0.987 0. 624 0. 507 0.813 0.877
1.0._. 0.944 0. 952 0. 627 0.513 0.853 0.916
1.1._. 0.886 0. 889 0. 634 0.524 0.934 0.996
1.2... 0.834 0.835 0. 640 0.534 1.013 1.074
1.3... 0.786 0.785 0.645 0. 544 1,004 1. 169
1.4... 0.743 0.741 0. 750 0. 553 1.172 1.230
1.6._. 0,721 0.702 0. 657 0. 561 1.222 1.308
2.0... 0. 560 0. 557 0.672 0.599 1. 588 1.693
3.0._. 0.408 0. 398 0.711 0. 655 2.335 2.453
4.0... 0.313 0. 305 0.734 0. 698 3.086 3.207
5.0... 0.255 0.248 0.766 0.728 3.842 3.960
6.0... 0.214 0.211 0.784 0.754 4,601 4,710
7.0... 0. 183 0.182 0.790 0.776 5.380 5.460
8.0... 0.162 0. 161 0.796 0.794 6.08 6.21
9.0... 0.144 0. 143 0.814 0.810 6.69 6.81
10.0... 0.130 0.12¢ 0.830 0. 824 7.51 7.6

equation (26) to compufv themn. The error will
be within 2 percent. For B>50° the collisions
become unimportant and equations (27)~(30) will
give the correct values to within 2 percent. How-
ever, there the validity of the Fokker-Planck
equation already becomes questionable and one
should use DAwsoN-OBERMAN’s values instead
of ours.

In Table 3, the complex conductivity calculated
in this paper are compared with those obtained
by RosinsoN and BERNsTEIN. They showed

that transpart coefficients obtained from tke
Fokker-Planck equation should p an ex-
tremal nature, and proceed to calctilate conduc-
tivities using the variational technique. Their
Table 6 gives conductivities for various values of
the logarithm of w/w, including very large values
of we. In our Table 3 only those values are in-
cluded for comparison which fall within the range
of validity of the Fokker-Planck equation. The
discrepancy butween the two results are generally
within 5 percent.
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TasLe 3.—Comparison of the a.c. conductivities oblained in this paper (direct inlegration)
with those obtained by Berstein and Robinson (variational calculation)

Rea/A —Ime/A
w/we Log X
(X =4+4/20/w;)] BERNSTEIN BERNSTEIN-
RoBinsoN | SuEN-CHEN | RoBinsoN SHEN-CHEN
0.0, ceeeo_._. - 1.734 1.734 0.000 0.000
0.0057......_.. -3.0 1.734 1.734 0. 004 0.002
0.0179..__._ ... -2.5 1.730 1.732 0.649 0. 408
0.05656.. _._... -2.0 1.705 1.722 0.154 0. 151
0.179. ... -1.5 1,605 1. 608 0. 447 0. 443
0.565.... ... ~1.0 0.992 0.987 0.816 0. 813
0.901___._..___ -0.8 0.637 0. 632 0.785 0.787
1,426 ... __.... -0.6 0. 357 0. 353 0.545 0. 649
2,261 . ...... -0.4 0.183 0.179 0.477 0. 482
3.559. .o ... -0.2 ! 0.087 0.084 0. 329 0. 336
5.656 . ....._. 0.6 0.040 0.038 0.201 0.204

We should add that our results can be readily
applied to the case of conductivity in the presence
of a uniform magnetic field. The addition of the
magnetic field leads to equations which are en-
tirely similar to (10). If the electric field is
parallel to the magnetic field, the conductivity is
not affected. If it is perpendicular to the mag-
netic field, the conductivity becomes og(w)=o
(w+21), where o is the function obtained in this
paper and wy =eH /me.
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PARTIAL WAVE THEORY OF DIATOMIC MOLECULES,
T
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A. TEMKIN AND A. K. BHATIA¢t

The method of expanding the wave function of diatomic molecuies in a series of orbital angular
momentum cigenfunctions (partial waves) is extended to two-electron homonuclear molecules,
The angular momentum is a function of the Euler angles only; a symmetric ¢} sice of these angles
is used which greatly facilitates the description of the xchange character of the wave function.
As a result, explicit equations for the 3 dimensional “radial”’ functions can be derived for all the
different magnetic parity, and exchange states. For X states t.ic partial wave sums only go
over alternate v.lues of the angular momentum giving rise to the expectation of an e¢ven more

rapidly convergent seriec in these cases,

I. INTRODUCTION

In o previous paper! as well as others,? the idea
of expanding the wave functicn of a (homonu-
clear) diatomic molecule in a series of angular
momentum eigenfunctions was introduced for ihe
purpose of affording a very natural method of
successive approximations in these problems.

Previous calculations!? using this idea have
almost exclusively been confined to the one-elec-
tron molecule Hy*+. In that case, the formalism
is rather easily constructed, and the results are in
ti.e nature of a check as the problem is amenable
to exact calculation.! The comparison with the
exact resul.s is nevertheless most encours-ing.}

The main immediate geal of this approach is
two-electron molecules for which there is no
analytically exact solution. As a prerequisite for
effecting this approach, however, it is necessary
that two electron atems be completely understood.
Although the general approach to the two-
electron atomic problem is quite old*, only results
for specific angular momentum states hava until
recently b-en derived. The difficulty lay in the
description of the character of the wave function
under the exchange of electron coordinates which
becomes very complicated®* with the original
choice of Euler angles®. The explicitly complete
solution has required a symmetrical choice of

-

*Published as Goddard Space Flight Center Document X -640-84-88,
Mareh 1064,

1Goddard Space Flight Center; National Science Foundation, Na-
tional Research Council residen?. resec.reh associate.

Euler angles, which Holmberg® has provided, and
has therefore only jusi been carried out’.

In section II, we very briefly review the main
results of that investigation and present some
additional transformation properties of the Euier
angles and vector spherical harmonics which bee:
on the present application. In section III we
describe the construction of the molecular wave
functions, and in section IV we derive the radial
equations. These equations couple states of dif-
ferent angular momentum through the potential
energy, but the kinetic energy acts in the same
way as in the atomic case. The new feature is,
therefore, only the coupling terms of *he molecu-
lar potential and this in turn depends on integrals
over three vector spherical harmonics. The heart
of section III is the resulting formule for these
integrals and the sclection rules for its non-vanish-
ing. This latter consideration leads to the
decoupling of the Z states accordirg to even (+)
or odd (~)I. This decoupling is not present for
other m _tates corresponding to the absence of the
+ quantum numbers in-those cases; taus the 2
states prov:de particularly favorable cuses for the
rapid convergence of the partial wave expansica.

Section V presents the zeroth-order equation
for the Z,* states and discusses a specific calcula-
tion which ran he related to the accuracy of this
approximation and which by inference bears upon
the convergenc : properties ~f the entire sequence
of approxim~tions which this paper projects.

1336
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Il. THE EULER ANGLES AND
TRANSFORMATION PROPERTIES

The Schrédinger equation of a two-electron
homonuclear molecule whose nuclei are con-
sidered fixed (Born-Opperheimer approximation)
will deperd on the two vectors of the electrons r;
and r, which cun be measured r=iative to an origin
defined as ti:e midpoint uetween the nuclei and
parametricaily o. the internuclear seperation R . 5.

In place of the six coordinates r,, r; one can in-
troduce the three Euler angles and three residual
variables; the Euler angles describe the orienta-
ticn of the plane containing the two unit vectors #,
ani T, relative to a space-fixed coordinate system
(whos2 z-axis is by definition the internuclear axis).

The particular Eu’sr angles we use where intre-

% duced by Holmberg® and have the advantage of

being symmetrically disposed with respect to the

FiGure 1.—Perspective drawing of (Holmberg’s) Euler
angles and the unit vectors of the problem.

two-electron. Figure 1 contains a diagrammatic
epresentation of these angles and the unit vectors
with which we shall be concerned.

The axes are defired by
& = (£, X#s)/sin 0y (2.1)
X' = (#X#)/sin 6 (2.2)
y=¥Xx (2.3)
where

(0= (=),

o0 —m l ) u+-{l \ - g_ ..-é = o 0 0
8in (—2-0 cne \50/ t+2 l,t.z,l-i-llc m/|, sip

The Euler angles cre obviously: 6 =angle between
f£and #; & =angle between X and {'; ¥ =angle be-
tween %’ and (f,—#%;). Trigonometric relations
between these angies and the particles spherical
angles have been worked out ir reference 7; the
reader is encouraged to familiariz» himself with
that discussion, although we shal! attempt to
make this treatment reasonably self-contained.
Specifically, we shall repeat her» the relation of
the z, y and z components of , and #. to the Euler
angles in order that the transform' ' »n Lroperties
given below can readity be checked.

. .
;—3=sm #1 co8 ¢y =cos b sin (Y — 146,,)
1

+cos 8 sin P cos (y—140,,) (2.5)

i—/l=sin ¢ 8in g1 =sin ® sin (Y —1460,,)
2
~cos 6 cos ® cos (Yy—1461.) (2.6)
—:—’=cos ¥1=—sin 6 cos (y— 140, (2.7)
1

The formulae for analogous components of £, may
be obtained from th: above by letting 63— —6,.
The anglc 6y3 is the angle between £, and £,. It is
not one of the Euler angles, but ratiier one choice
of residual coordinate, th : nther two usually being
chosen as the two distances r, and r.. The resid-
ua! coordinates are often called peneralized radial
coordinites; an alternate choice s r,, ., 7y, the
Iatter being the intereleciron distance.

The distinguishing feature of the L.ler angles
as opposed to residual coordinates is the fact thav
the angular momentum depends only on the Euler
angles. In this connection, it is well known thaut
square of the total orbital angular momentum,
M?, can be conserved in atoms but not in diatomic
molecules, whereas the z-component of the anguiar
momentum, M, i8 a pussible constant of the
motion in both cases. A cent:..] role in the atomic
problem is therefore played by the eigenfunctions
of the total angular moraer.'um D *(6,9,¥):

Pl (X X)) -a-—\/?_(—z-—"}—)c“"”“’d"' 0 (2.8)

N\

an ]
2) (" .9)

ewcrmmsmmne e .
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B=|k+m|+|k—m|+2

and

Nlmt=

1 [@e+1) (¢+ilk+m|+3[k—m|)!

(2.10)

(—31k+m|+4k—m|)!

(Jk—m[)! 8x*

The eigenfunction character of these finctions
is then given by

MED7 = h2¢((+1)Dt (2.12)
M.D7*=kmD* EAS)

where the explicit form of M2 and M, has been
derived in reference 7 and in any case is known?,
In the atomic problem if we are describing a state
of definite orbital angular momentum ¢ with 2-
component, m, then the wave function is at most a
finite sum over the (2(+1) function for the given
¢ and m:

¢
Wiem(ry,r2) =2 ‘0?"(l'x,l’z,onz)Dc"'k(O,Q,;l/) (2.14)
el

Actually the above sum is more general than
what is needed. Specifically one has an addi-
tional operation which commutes with the Ham-
iltonian and therefore gives rise to an additional
constant of the motion. This is the oper«wtion of
spuce inversion (called parity, p, in the ator ..
application”), usually labelled {E in mole ular
applications® corresponding to the operation r,
——r;. I7——rI2 jn all cases. It turns out that
only tne Euler angles are involved in this trans-
formation, and if we denote them by a three
compcnent vector, (8, ®, ¥), then?

[/} @
z‘E(«p)=< & ) (2.15)
7 +y

iEDPH0,8,%) = (—1)*DPH0,8,%)  (2.16)

and

Therefore, the wave function (2.14), if it is to be
an eigenfunction of 1E, raust be restricted to even
or odd k. Since the action of the Schrodinger
equation is to couple all possible g™* functions
for the given £ and m, it can be seen that the in-
vocation of parity halves the number of functions,
and thus among other things is of considerable
practical utility.

(—4k+m| —}|k—m|)!

'
(l+%]k+m]—%]k_ml)!] 2.11)

In the case of diatomic molecules the invariance
against rotations, except those around the z-axis,
is lost. Thus according to the above arguments
only the rotation quantum number m survives.

“The iden of the partial wave theory, then, is to

expand the molecular wave function in terms of
the orbital angular momentum:

The above sum too may be delimited according
to the symmetry properties of the states we intend
to describe. These symmetry operatious are well
known for the diatomic molecule,?, and except
for exchange, ¢, they all involve only the Euler
angles. The transformation involved in the
residual variables for e, is r;2r; independent, of
whether the third variable is taken as 8, or 7.

In Table I we have summarized the transforma-
tion properties of the Euler angles and the vector
spherical harmonics under some of the major
symmetry operations of the two-electron homo-
nuclear diatomic molecule.

In the next section we shall utilize these proper-
ties to construct wave functions with the desired
symmetry properties. We emphasize that not
all these properties are independent. Tkus for
example a full space inversion is the product of
the inversion about each of the axes separately:

tE=0)0020,y

where the factors on the right can be written in
any order. Therefore, the operation o, is
redundant.

The effect of additional symmetry operations
such as ¢, on the angular momentum eigenfunc-
tions and variables can easily be worked out from
Table I by noting, in this case, that

i0,=1E"0,

Not all symmetry operations commute with M,.
Specifically o, does not commute with M,. This
may be easily ascertained by envisaging a vector

AR .
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TaBLE 1.—Symmetry properties of the Euler angles and the angular momentum eigenfunctions.
Transformation Property [ @ v Dt

iE space inversion (parity) 3 T+x (-1'Dy*

ox reflection through x=y plane &4x L W (-1)**p;*
(inversion of z-coordinates

0. reflection through z —x plane r—8 2x—® v (— 1)"' D™
(inversion of y-coordinates)

.. reflection through z —y plane x—0 r—& ¥ (=1t~
(inversion of x-coordinates)

e1n exchange of particles* *~—0 4x 2 —¥ (-1‘D™*

*This operation also affects the residual coordirates. See text.

whose projection in the z-y plane is in the first
quadrant. If first you reflect it through the y-z
plane (s,,), thus putting in the second quadrant
and then rotatz around the z-axis by 90° this
vector will end up with a projection in the third
quadrant. If first you rotate by 90°, putting it in
the second quadrant, and then reflect through the
y-z plane, you put it back into the first quadrant.
Thus

[oq, MJ7#0 (2.19a)

This means that in general one can’t construct
simultaneous eigenfunctions of M, and o,.

There is one exception to that situation, and
that is = states.

For in that special case

M,Do*=0, (2.17)
so that
(o0 MD2*=0, (2.18)
or
(00, M mmo=0 (2.19b)

We shall see in the next section that because of
this fact the structure of the = wave function and
the resulting Z radial equations is quite different
from all other states.

. WAVE FUNCTIONS AND THE POTENTIAL
ENERGY

In order to fucilitate the derivation of the radial
equations, it is convenient to construct an alter-
nate set of orthonormal vector spherical har-

monics which for m=0 are real’. We define

D™ =(V2+50(2—V2)) !
(D7*4D™")  (3.1a)

D™= (Vi)™ (D7~ D) (3.1b)

The important point about these alternate sets
of vector spherical harmonics is that they are
eigenfunctions of exchange:

exzDﬁ”"Hz: + ("l)éng'.H: (3.2)

while still retaining their eigenfunction character
with respect to parity, M? and M, (with eigen-
values (—1)* A%({+1), h m respectively).

For m»0 we have already indicated in the
previous section that the correct expansion of the
complete wave function is

] ”
\Ir,,,-_-EI IE(f,"""’*(r)D}"'"‘"’
tm|im| x

+™O(D™T)  (3.38)

The double prime on the summation indicates that
every second value of the summation index (in
this case x) is to be taken. This insures as stated,
that the wave function is an eigenfunction of {E.
It is precisely this property which distinguishes
the homonuclear from the heteronuclear mole-
cule. Thus there is established in the present
homonuclear case two classes of solutions for a
given m, one for cven and one for odd x. These
are of course the gerade and ungerade states
respectively.
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The radial functions f{™¥%(r) are written as
functions of r which is short for the generalized
radial coordinates, either r, 15, 612 OF 7, 72, T12.
The superseript indicates that the radial fu..ctions

depend on the magnetic quantum number m.

How-~ -er the well-known degeneracy of the energy
with respect to +m indicates that the radial func-
tions for +m states must be simply related to each
other. The relation is undefined up to a + sign,
but a consistent choice is (see below)

ﬁ‘"’"’*(r:,rz,ﬂu) = (_ l)ﬂﬁ(m.n:}:(run,elz)

The derivation of radial equations divides itself
into two parts, the kinetic 2nergy and the poten-
tial energy. The kinetic energy is diagonal with
respect to £ and m but by no means trivial with
respect to how mixes the allowable x components.
However, this aspect of its behaviour has beev
derived in detail in reference 7 and will not chang-
in this application.

The potential energy in the atomic problem
depends only on the generalized radial variables
1y, 73, 712 and therefore acts as additional, com-
pletely diagonal terms in the atomic radial equa-
tions. On the other hand the molecular potential
energy is precisely what destroys the spherical
symmetry of the Hamiltonian. Specifically for
nuclei of charge z (energy in units of rydbergs)
to complete molecular potential is

2
et R Rar R Rea rm O
The last term is the interelectron repulsion and
since it commutes with the angular momentum as
discussed above need not be considered further.
For the rest we can expand

”
Vmoe=-42Z  gx(3 Ras, r{)PA(81)

A\ even

—43% (3 R4z, 72) Pr(3) 3.5)
even
where
xk
.’!-/T:i <y
g)\(z: y)E yx (3'6)
porey y<z

R4 is the internuclear separation. The Legen-
dre polynomials P\(¢) (note what we mean is
eg. Py(d)=cosd not P,(¢#)=4¢) can further be

expanded in terms of the Euler angles and 6,,7:

B8 = (2>\+ ) 92 [k (0:) D"

u even
- a:_(alz)Dfo'm—]

(3.7a)

Applying es, we get from the above

P*('?”)=(2x‘f:1)12 ot 0D

6 even
~a(612)DS™]  (3.7b)

where

o0 =1 G2

+(1—2dq,) cos (5012)} (3.8a)

gou)

o (o = (1P| QN sin (
(3.8b)

The associated Legendre polynomials are under-
stood to have the phase of Magnus and Ober-
hettinger'?, and their argument is understood to
be inserted in the transcendental form of these
functions as parenthesized above.

Since Pp(#) has parity (—1)* and from (3.5) A
is even, it follows the sums in (3.7) go over only
even u as indicated.

The point of these expansions is that when the
wave function (3.3) is substituted into the
Schrodinger equation

HVY,=Ev,, (3.9
where

H= T+ Vmo¢+2/7'12 (3.10)

and T is the kinetic energy, only Ve will couple
terms of different . The decompositions, Eqgs.
(3.7), then tell us that the coupling from a state
(radial function) with quantum members ¢, x, m
to one with quantum numbers ¢,, x,, m (the molec-
ular interaction is still diagonal in m) will be gov-
erned by integrals over three vector spherical
harmonics. Two of these angular functions come
from the coupled states and one from the interac-
tion; the integral in question is therefore a linear




ruonn

e At g SR - ¢

GENERAL 1341

combination of integrals of the form

s 2x2x

0 0

- 'The formula for this integral given on the rhs
of the above equation is well known" in terms of
the Clebsch-Gordan (C-G) coefficients. The se-
lections for the vanishing of this integral can
therefore be deduced from those of the C-G
coefficients.

Consider first £ states (m=2). In this case
the first C-G coefficient becomes (£ N\ 00/£0).
This coefficient vanishes unless {+\+{ =even
(integer). But N is an even integer, Eq. (3.5,
therefore:

L+ =even

This says that for Z states only radial functions
of even ¢ will be coupled together and only odd ¢
states will be coupled but there will be no inter-
mixing. Thus for T states the expansion of the
wave function, Eq. (3.3a), separates into two
classes defined by the evenness or oddness of ¢:

L4
Wo=Z2(fi** (r)D{**
Ix
+HEPT(MDETT)  (3.12)

The molecular quantum numbers + are deter-
mined by the parity of ¢ which is the eigenvalue
of ¢ g,y. This then constitutes the exception to
the noncoramutivity of o,, =i M, which was
noted in Eq. (2.19).

The quantum lables of the Z states are com-
piled in the entries of the following simple array:

W_, =2

{ even odd
X
even gerade, + gerade, —
odd ungerade, +  ungerade, —

For m#0, the relevant C-G coefficient is not
necessarily zero when {+A+{=o0odd. Thus the
decoupling according to even or odd ¢ (+sym-
metry) does not occur, corresponding to the non-
commutivity of ¢, with M,, Eq. (2.19b). Here,
however, there exists a well known degeneracy in

/ [ f (DE™)*DY* DY *sin 60dedy (—2%;*;(—12)((!—2}%1—)((,,\—";0 [G—m) (A —xwlf—x)  (3.11)
0 .

energy with respect to +m eigenfunctions. If
the eigenfunction for +m is given by (3.3a) and
that for —m is given by

4
E(f;""’”"""ljt("’"-"”'

{=imi x
+femm=D,mo=y (3.3b)

the obvious question is what is the relation of the
femwite f,emxx The answer to this question
still resides in the same C-G coefficiznt, in this
case in the symmetry property!!:

(OxmO | t'm) = (— 1)‘+H‘,(()\—-m0 [¢—m)  (3.13)

Since A= 2ven, we see the siun of the coupling of
an £ to ar. ¢’ state is reversed for ¥_, relative to
what it is for ¥,, if {+¢' =0dd (i.e., £ and ¢’ have
opposite parity). If the radial functions change
sign in the same way, then the equations (and
hence the eigenvalues) will in fact not change.
i.e., we must have

fiemm = (— 1), muk (3.14a)

This relation could be altered by a minus sign;
the relation

folmmE < (— [)t+mf, om0k (3.14Db)

is equally acceptable and has the advantage that
the first radial function that appears in the expan-
sion of ¥*,, will be the one which doesn’t change
sign when used in ¥_,.

In all ~ases we have by virtue of the very sim-
ple exchange property ol D™ »* Eq. (3.2), that
the complete spatial wave function ¥, will be
symmetric (upper sign) or antisymmetric (lower
sign) if the radial functions have the exchange
property

ﬁm.xw(rz, r, {f::})

=41(- 1)‘f;"'"’+(n, n{fi:}) (3.158)

B Y
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and

e ndif)
=t(- 1)”%"'0_(71, 7‘2,{012})
T12

These properties essentially halve the inde-
pendent variable space over which the equations
need to be integrated’.

(3.15b)
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IV. RADIAL EQUATIONS

The {oregoing discussion together with the
knowledge of the kinetic energy operator? essen-
tially allows us to write down the “radial”’ equa-
tions for arbitrary m. Specifically substituting
(3.12) or (3.3a) into the Schrédinger equation,
multiplying on the left by D,™~* and integrat-
ing over the Euler angles, one obtains

Loat 22 m— 2] pommt ([ Lo L] fHA D" ¥
[t 38(m-2)Jm o -G [ (st

cot 02

Ho DD G Be v 2 fm () +

1 1 cos Oz
+@“@PG§@@"

51)1(1 2Ax)‘-(m xX)— | (x+1)(x+2)
2 sm 012 J¢ sm 0

1 (1 60(—2)
4 sin 02 (I+5o 1—2(\/_ 1))

a3

7y i=1 ya(even)

A x—?A x—1

1
cot 012—2 Sil’l 012)

gx( R4, ry J(1— 262,6,'\_)01 (A(Glz)lm(‘h'f‘; 0ty 'Yf)ft(m v”’(") =0

Ut m,x
o (1 2A.)}f‘ ")
cot Oy (14+380.,_2) Ai—zAx—l (m, x—2)+( )]
4 sin 0 (1+48,.-2(v/2—1)) Bix

(m, x)—(r) —_—y 2\ .f(m .)—( )

3612

w2 ()

ﬂ‘ f(m x—2)—( )]

(4.1a)

2
b4 cot 012 °

[L912 + 2

COt 012
sm 012

cos 6y,

_2\|imm—py (1, 1] fOFD) =
E ?;)]" ® (rﬁ+r§)[{ 2sin? 0 4

=2 (1 = 83 40) (1) (x-2) B, x+2 ™0 (r) 4SO Y2

1 1 1
+(;'? _—73> l: - X<. . 012 —cot 012 - 2 sin 012) ¢
12 2 gin (?)

2 sin 6y lx(l AAx)}f(m x)_( )

cot 6 ¢-—2Ax-l (m x—2)—
4 sin 6y Lo o dowt) =5 e (r)

(ma+ ™ () 8ul1=241) m. -
A T 2sme, ¢ - )

(1+380.x-2)

(=8 0D Dy ey

sin 012
™33 S,
vy §=1 ) (even)

The index v in the above formulae represents the
triple indices ¢, x, e. For example
=4, xp ¢ 4.2)

A summation with respect to this index means:

Z2=2 22

T Yy

(4.3a)

9“( Rys T!>(1 — 281,80, )eA"™ (82) In(fx—, 1, ¥)fi™™ Y (r) =0

4Sln bz (148042(v/2—1))  Bex

¢ ¢ 1
A. x—!A x—1 f‘(m,x—2)+(r) J

(4.1b)
and in particular
14 L4 » (4
z =3 z z (4.3b)
vp(even) A (even) u (even) o

¢ is a symbol which can be + or —, 8o taat a sum
over ¢ consists of only these two verms.

Aside from these abbreviations, the radial equa-
tions have been written above in a fairly explicit
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form (with a corresponding sacrifice of elegance). _

For an arbitrary £ the coupling is reasonably com-
plicated although as we shall see in the next sec-
tion for £ small the equations simplify greatly.
The nature of the coupling is nevertheless con-
tained in the equations themselves via the selec-
tion rules for the various coefficients. Regarding
the effect of the kinetic energy coupling, a verbal
description of the nature of that coupling is given
in reference 7.

The equations in the form.given.here are.ap-..

propriate to the radial coordinates r,, r3, 12 with

Le=1 9, .1 9,
s 1 Ire? ! 2 Or,‘ 2

1 1 1 9 f . 3
+(;:;+;2~2 . 53;(81!1 09 :3_0_1;) (4.4)

Also the fact that one has two functions (and
hence two equations) for a given £ and x indicates

that the functions are in symmetric form. Hence

~ the soiutions may be confined to the region, say,

r1> 1y with the boundary condition

(m, x)eér
[iﬁ ] -0 (4.58)
67;0 Ty =Ty
and
(F" %), ap, =0 (4.5b)

- where-d/dn.is. the.normal derivative.and. e-and-

& are the two choices of 4+ and —, being so
selected according to (3.15) to give either the
space symmetric (singlet) or the space antisym-
metric (triplet) soiution of the Schrodinger
equation.

The coupling due to the potential energy is
given in the Iast term of each of the radial equa-
tions. It can be seen that it alone is m dependent,
and coupling coefficients I, are:

Y Y

4
Im(’Y, 1Y) ‘Y/) = _(2>\+.~11_)‘*

0 00

sin 0d0d®dy (4.6a)

This quadrature, which is a linear combination of integrals of the form (3.11), yields:

(14 SomBox(VZ— 1)) (1 + 80, (V2 = 1)1+ Sombons(V2—

Im(v, Y™ ) =

{e}*{a}le)
2(20+1)
26+1)

Here the €'s are to be thought as the numbers +1,
and

fe.} ={(1+e)+i(1-e)t) (4.7)

These coefficients are subject to many restric-
tions if they are not to vanish. Also only one of
the C-G coefficients in the final square bracket
will not vanish when any of these indices are
non-zero. (When x=u=0 all four terms con-
tribute.)

V. TRUNCATION AND THE =) STATE OF H:

The coupling in £, and \ contained in the poten-
tial terms in principle includes a doubly infinite
sum. If one truncates the sum in ¢ at =L,
then only a finite number of terms in the A sum

(L4-eaner(— 1)) (ON =m0 o) (N = x| &= x1) 4- €, EN—xus| £s)

+ea(N—x—ulli—x;) +e(Oxu|l;—x,)] (4.6b)

survive. The inclusion of all \ terms for a given
L, then constitutes a given order of approxima-
tion in the context of the partial wave theory.

It is now our assertion that the solutions of suc-
cessive approximation converges usefully. By
this we mean two things; first that for a given L
the f/'r)™=e from {={, to {=L get smaller in
some sense. Secondly in going from one L to the
next the f,(r)™»¢for a given set of indices (¢, x, ¢)
does not change much.

In view of the complicated nature of these equa-
tions this would be a very ¢*fcult thing to prove
rigorously. The heuristic argument, however,
follows that for the one-electron diatomic mole-
cule!. Namely, in the centrifugal terms, which
are those multiplied by (ri—?<4rs"%) in the above
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equations, there is a repulsive term proportional
to {({+1) which tends to dim‘nish the amplitude
of each succeeding f;(r) component in the region
of interaction.

Since, however, there are considerably more
terms than this £({+1) term, the cogency of this
argument is considerably more obscure than its
one-electron counterpart! and in any event it is

the equatiion {z=-1):
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known from at least une atomic example that
there can be resonance regions in which an addi-
tional £ component can in fact dominate its
predecessors.!?

We shal' therefore examine one case in which
there exisl nunerical results. Consider the Z,*
states of . In zeroth order (I =0) these states
which include the ground state, are governed by

19 1 a’ 1 af. a\, 2m 1
[;'T ﬁrd-r a’d +ml-2' m(Sln 0126012>+F(E 2/7‘12+4yo(2348, 7’1)

This is a three-dimensioral partial differ_tial
equation for a single function (f=f,9-9+). The
expression in square brackets is manifestly in-
variant with respect to exchange, ry&=2r;, and the
singlet and triplet solutions are distinguished by

Below we shall outline a systematic approximation procedure ior solving this equatics.

+4go(%ma, n))}/(n, r, 02) =0 (5.1)

the boundary conditions:

a,.
[aﬁf(rx, T3, 512)] =0

71Ty

singlet (5.2a)
U(rl, r2) 312],-‘-"=0 triplet (0.2b)

¥or vomplete-

ness, however, we shall give this equation with r,, r;, and r3 as the independent variables:

- 8 L 2mf

16 198 |2 a’ n+rh—-r &
[}T ar? l+r ot 2+ art, rut rry  Ondrg |

T ﬁz \E-2lrlﬂ

riry arzarm

+290(%Ru,r1 +200(%RAH."2))]I(1‘1, 73, 012) =0 (5.8)

This form of the zeroth order equation is ap-
propriate for solution in terins of Hylleraas-type
expansions. In reference 7 other ways of writing
these equations are given, involving in particular

asymmetric functions F(r;, rz,{:::})

A methodical way of solving the ;3 equation is
to make a relative partial wave expansion of f:

Sy 13 )= 2 L (rir)Pu(0)  (5.4)
a=o T 7g

The Legendre polynomials P,(81) are selected
because they are the eigenfunctions of the 6
derivative term in (5.1). Also the interelectron
repulsion 1/r; has a well known expansion in
terms of P,(6ys), so that one can easily derive an
infinite set of two dimensional partial differential

equation, which are essentially those that already
have been derived in the case of the scattering of
electrons from atomic hydrogen's. One can then
truncate the sum at n=N and expect convergence
in N in a completely analogously way as one
expects convergence in L in the partial wave
theory as a whole.

Alternatively one can expand the total wave
function in the form (considering here only the
singlet case):

V¥(12)=2Z 2Z T CuomppplBan(md” )

muy nH p

You( ) You(2) 4 (1222)]  (5.5)

If one restricts this sum to »; = and ]l values
of u for each »,, then this expansion is equivalent
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to (5.4). A detailed investigation of the ground
T} state of H; using (5.5) has been carried out
by Hagstrum and Shull¥, They have in fact
relaxed the condition v;= 1, s0 that what they
approximate in these cases is a hybris of approzi-
mations within the partial weve theory. They
have, however, examined the v,=»=0 (spheri-
cally averaged) approximstion. This is equiva-
lent to including one term in (5.4) within the L=0
(zercth orcler) approximation. They obtain
E=-208%ryd. (1ryd.=13.6:7)at Rss=1.4
Bohr radius. Tt is quite clear that the inclusion
of all »;= and with their associated u terms will
lower this energy to below —2.1 ryd. Such a
value is to be compared to E=—2.34 884 ryd.,
tiie very accurate nonrelativistic value (including
the nuclear repulsion) of Kolos and Roothan!s,
The differences between these numbers, less than
0.2 ryd., is very close to the difference between
the zeroth order and exact H;t+ energies near their
minimum (Rss=2). This is just what our
heuristic argument would lead us to expe.t in
view of the fact, this being a = state, that the next
angular momentum, {=2, is two units greater
than the included ¢==0 component of the zeroth
order problem, i1 2omplete analogy with the case
for the Hyt molecilar ion!. In addition for the
exact solutions of the partial wave approximations
the analogy carries through regarding the upper
boundedness of the energies of the ground and

1345

excited state solutions and cof their mutual
orthogonality.
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